
Results and perspectives of DAMA/LIBRA

P. Belli INFN – Roma Tor Vergata MEDEX'17 Prague, CZ May 29 – June 2, 2017

DAMA set-ups

an observatory for rare processes @ LNGS

- DAMA/LIBRA (DAMA/Nal)
- DAMA/LXe
- DAMA/R&D
- DAMA/Crys
- DAMA/Ge

For other results see the talks of O. Polishchuk,

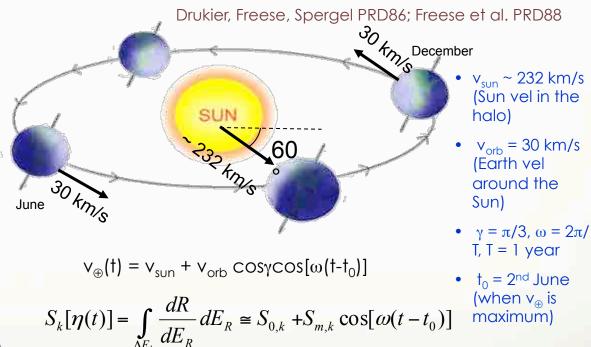
R. Cerulli,

Collaboration:

Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing

- + by-products and small scale expts.: INR-Kiev + other institutions
- + neutron meas.: ENEA-Frascati, ENEA-Casaccia
- + in some studies on $\beta\beta$ decays (DST-MAE and Inter-Universities project):

IIT Kharagpur and Ropar, India


web site: http://people.roma2.infn.it/dama

The annual modulation: a model independent signature for the investigation of DM particles component in the galactic halo

With the present technology, the annual modulation is the main model independent signature for the DM signal. Although the modulation effect is expected to be relatively small a suitable large-mass, low-radioactive set-up with an efficient control of the running conditions can point out its presence.

Requirements:

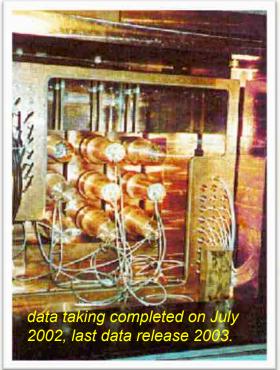
- 1) Modulated rate according cosine
- 2) In low energy range
- 3) With a proper period (1 year)
- 4) With proper phase (about 2 June)
- 5) Just for single hit events in a multidetector set-up
- 6) With modulation amplitude in the region of maximal sensitivity must be <7% for usually adopted halo distributions, but it can be larger in case of some possible scenarios

the DM annual modulation signature has a different origin and peculiarities (e.g. the phase) than those effects correlated with the seasons

To mimic this signature, spurious effects and side reactions must not only - obviously - be able to account for the whole observed modulation amplitude, but also to satisfy contemporaneously all the requirements

The pioneer DAMA/NaI: ≈100 kg highly radiopure NaI(TI)

Performances:


N.Cim.A112(1999)545-575, EPJC18(2000)283, Riv.N.Cim.26 n. 1(2003)1-73, IJMPD13(2004)2127

Results on rare processes:

- · Possible Pauli exclusion principle violation
- CNC processes
- Electron stability and non-paulian transitions in lodine atoms (by L-shell)
- · Search for solar axions
- Exotic Matter search
- Search for superdense nuclear matter
- Search for heavy clusters decays

PLB408(1997)439 PRC60(1999)065501

PLB460(1999)235 PLB515(2001)6 EPJdirect C14(2002)1 EPJA23(2005)7 EPJA24(2005)51

Results on DM particles:

- PSD
- Investigation on diurnal effect
- Exotic Dark Matter search
- Annual Modulation Signature

PLB389(1996)757 N.Cim.A112(1999)1541 PRL83(1999)4918

PLB424(1998)195, PLB450(1999)448, PRD61(1999)023512, PLB480(2000)23, EPJC18(2000)283, PLB509(2001)197, EPJC23(2002)61, PRD66(2002)043503, Riv.N.Cim.26 n.1 (2003)1, IJMPD13(2004)2127, IJMPA21(2006)1445, EPJC47(2006)263, IJMPA22(2007)3155, EPJC53(2008)205, PRD77(2008)023506, MPLA23(2008)2125

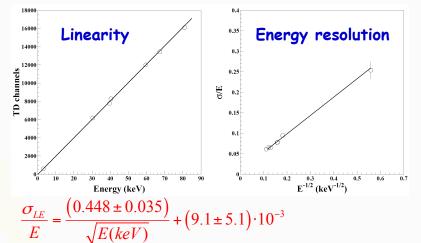
Model independent evidence of a particle DM component in the galactic halo at 6.3σ C.L.

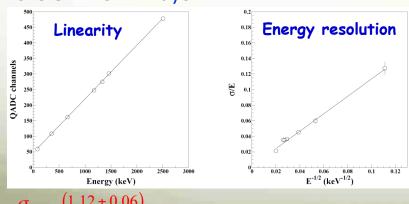
total exposure (7 annual cycles) 0.29 tonxyr

The DAMA/LIBRA set-up ~250 kg NaI(Tl) (Large sodium Iodide Bulk for RAre processes)

As a result of a 2nd generation R&D for more radiopure NaI(TI) by exploiting new chemical/physical radiopurification techniques (all operations involving - including photos - in HP Nitrogen atmosphere)

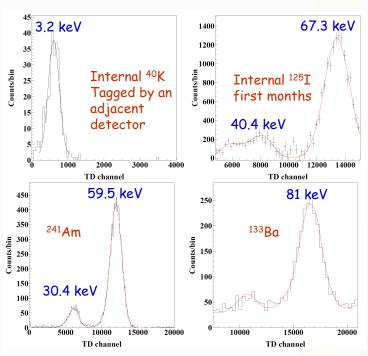
Residual contaminations in the new DAMA/LIBRA NaI(TI) detectors: ²³²Th, ²³⁸U and ⁴⁰K at level of 10⁻¹² g/g



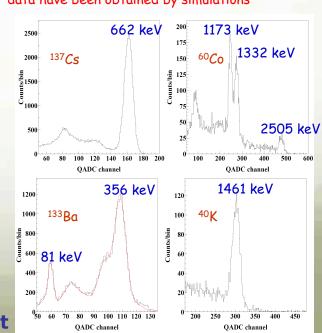

- Radiopurity, performances, procedures, etc.: NIMA592(2008)297, JINST 7 (2012) 03009
- Results on DM particles, Annual Modulation Signature: EPJC56(2008)333, EPJC67(2010)39, EPJC73(2013)2648.
 Related results: PRD84(2011)055014, EPJC72(2012)2064, IJMPA28(2013)1330022, EPJC74(2014)2827, EPJC74(2014)3196, EPJC75(2015)239, EPJC75(2015)400, IJMPA31(2016) dedicated issue, EPJC77(2017)83
- Results on rare processes: PEPv: EPJC62(2009)327; CNC: EPJC72(2012)1920; IPP in 241 Am: EPJA49(2013)64

DAMA/LIBRA calibrations

<u>Low energy</u>: various external gamma sources (²⁴¹Am, ¹³³Ba) and internal X-rays or gamma's (⁴⁰K, ¹²⁵I, ¹²⁹I), routine calibrations with ²⁴¹Am



High energy: external sources of gamma rays (e.g. ¹³⁷Cs, ⁶⁰Co and ¹³³Ba) and gamma rays of 1461 keV due to ⁴⁰K decays in an adjacent detector, tagged by the 3.2 keV X-rays



energy events) for high energy events are taken only from one PMT

The signals (unlike low

The curves superimposed to the experimental data have been obtained by simulations

Thus, here and hereafter keV means keV electron equivalent

Complete DAMA/LIBRA-phase1

	Period	Mass (kg)	Exposure (kg×day)	$(\alpha - \beta^2)$		
DAMA/LIBRA-1	Sept. 9, 2003 - July 21, 2004	232.8	51405	0.562		
DAMA/LIBRA-2	July 21, 2004 - Oct. 28, 2005	232.8	52597	0.467		
DAMA/LIBRA-3	Oct. 28, 2005 - July 18, 2006	232.8	39445	0.591		
DAMA/LIBRA-4	July 19, 2006 - July 17, 2007	232.8	49377	0.541		
DAMA/LIBRA-5	July 17, 2007 - Aug. 29, 2008	232.8	66105	0.468		
DAMA/LIBRA-6	Nov. 12, 2008 - Sept. 1, 2009	242.5	58768	0.519		
DAMA/LIBRA-7	Sep. 1, 2009 - Sept. 8, 2010	242.5	62098	0.515		
DAMA/LIBRA-phase1	Sept. 9, 2003 - Sept. 8, 2010		379795 1.04 tonxyr	2 518		
DAMA/NaI + DAMA/LIBRA-phase1: 1.33 ton×yr						

a ton × yr experiment? done

- EPJC56(2008)333
- EPJC67(2010)39
- EPJC73(2013)2648
- calibrations: ≈96 Mevents from sources
- acceptance window eff:
 95 Mevents (≈3.5
 Mevents/keV)

DAMA/LIBRA-phase1:

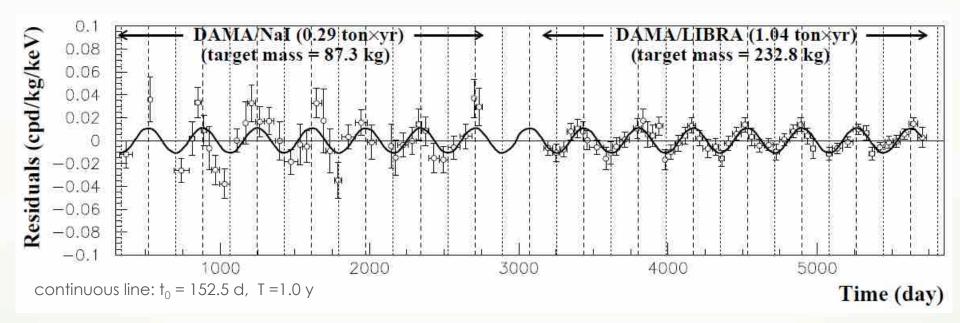
• First upgrade on Sept 2008: replacement of some PMTs in HP N₂ atmosphere, new Digitizers (U1063A Acqiris 1GS/s 8-bit Highspeed cPCI), new DAQ system with optical read-out installed

DAMA/LIBRA-phase2 (running):

- Second upgrade at end 2010: replacement of all the PMTs with higher Q.E. ones from dedicated developments
- commissioning on 2011

Goal: lowering the software energy threshold

Fall 2012: new preamplifiers installed + special trigger modules.
 Other new components in the electronic chain in development



Model Independent Annual Modulation Result

DAMA/NaI + DAMA/LIBRA-phase1 Total exposure: 487526 kg×day = 1.33 ton×yr

EPJC 56(2008)333, EPJC 67(2010)39, EPJC 73(2013)2648

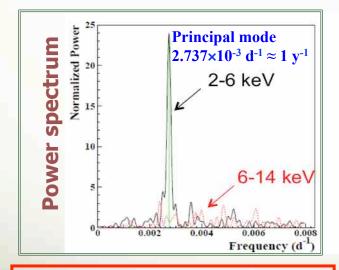
Single-hit residuals rate vs time in 2-6 keV

Absence of modulation? No $\chi^2/\text{dof}=154/87$ P(A=0) = 1.3×10^{-5}

Fit: $t_0 = 152.5$ d, T = 1.0 y $A = (0.0110 \pm 0.0012)$ cpd/kg/keV $\chi^2/dof = 70.4/86$ 9.2 σ C.L.

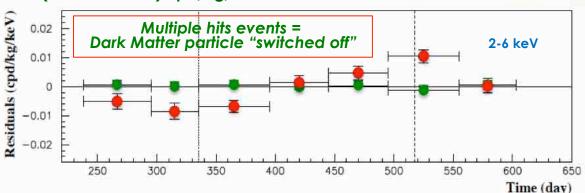
The data favor the presence of a modulated behaviour with all the proper features for DM particles in the galactic halo at about 9.2 σ C.L.

Model Independent Annual Modulation Result


DAMA/NaI + DAMA/LIBRA-phase1 Total exposure: 487526 kg×day = 1.33 ton×yr

EPJC 56(2008)333, EPJC 67(2010)39, EPJC 73(2013)2648

The measured modulation amplitudes (A), period (T) and phase (t_0) from the single-hit residual rate vs time

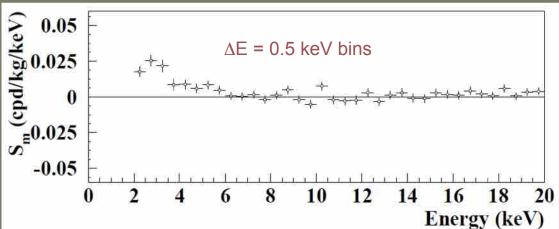

	A(cpd/kg/keV)	$T=2\pi/\omega$ (yr)	to (day)	C.L.
DAMA/NaI+DAMA/LIBRA-phase1				
(2-4) keV	0.0190 ±0.0020	0.996 ±0.002	134 ± 6	9.5σ
(2-5) keV	0.0140 ±0.0015	0.996 ±0.002	140 ± 6	9.3σ
(2-6) keV	0.0112 ±0.0012	0.998 ±0.002	144 ± 7	9.3σ

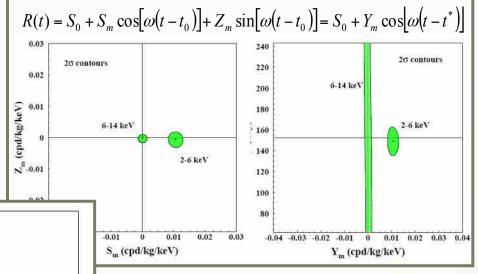
 $\mathbf{A}\mathbf{cos}[\omega(\mathbf{t}\mathbf{-t}_0)]$

No systematics or side reaction able to account for the measured modulation amplitude and to satisfy all the peculiarities of the signature

This result offers an additional strong support for the presence of DM particles in the galactic halo further excluding any side effect either from hardware or from software procedures or from background

The data favor the presence of a modulated behaviour with all the proper features for DM particles in the galactic halo at about 9.2σ C.L.

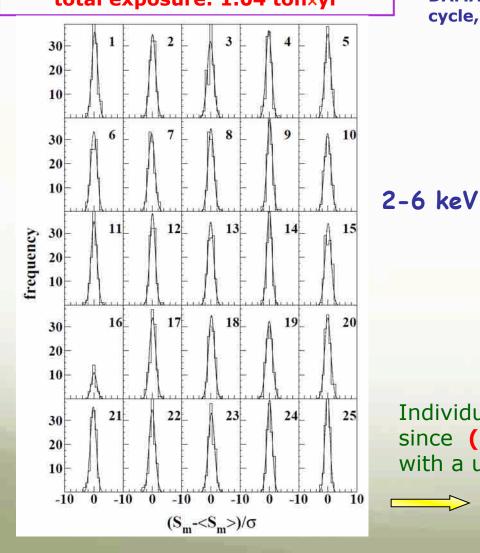

Model Independent Annual Modulation Result


DAMA/NaI + DAMA/LIBRA-phase1 Total exposure: 487526 kg×day = 1.33 ton×yr

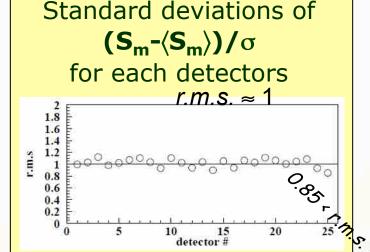
EPJC 56(2008)333, EPJC 67(2010)39, EPJC 73(2013)2648

- No modulation above 6 keV
- No modulation in the whole energy spectrum
- No modulation in the 2-6 keV multiple-hit events

$$R(t) = S_0 + S_m \cos\left[\omega\left(t - t_0\right)\right]$$
 here $t_0 = 1$ yr and $t_0 = 1$ 52.5 day


A clear modulation is present in the (2-6) keV energy interval, while S_m values compatible with zero are present just above

The S_m values in the (6–20) keV energy interval have random fluctuations around zero with χ^2 equal to 35.8 for 28 degrees of freedom (upper tail probability 15%)


Statistical distributions of the modulation amplitudes (S_m)

- a) S_m for each detector, each annual cycle and each considered energy bin (here 0.25 keV)
- b) $\langle S_m \rangle$ = mean values over the detectors and the annual cycles for each energy bin; σ = error on S_m

DAMA/LIBRA-phase1 (7 years) total exposure: 1.04 tonxyr

Each panel refers to each detector separately; 112 entries = 16 energy bins in 2-6 keV energy interval × 7 DAMA/LIBRA-phase1 annual cycles (for crys 16, 2 annual cycle, 32 entries)

 $x = (S_m - \langle S_m \rangle)/\sigma,$ $\chi^2 = \sum \chi^2$

Individual S_m values follow a normal distribution since $(S_m - \langle S_m \rangle)/\sigma$ is distributed as a Gaussian

with a unitary standard deviation (r.m.s.)

⇒ **S**_m statistically well distributed in all the detectors, energy bin and annual cycles

Summary of the results obtained in the additional investigations of possible systematics or side reactions – DAMA/LIBRA-phase1

(NIMA592(2008)297, EPJC56(2008)333, J. Phys. Conf. ser. 203(2010)012040, arXiv:0912.0660, S.I.F.Atti Conf.103(211), Can. J. Phys. 89 (2011) 11, Phys.Proc.37(2012)1095, EPJC72(2012)2064, arxiv:1210.6199 & 1211.6346, IJMPA28(2013)1330022, EPJC74(2014)3196)

- 2	21 3 67 1(201 1) 617 6)		
	Source	Main comment	Cautious upper limit (90%C.L.)
	RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10 ⁻⁶ cpd/kg/keV
	TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV
	NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV
١	ENERGY SCALE	Routine + intrinsic calibrations	$<1-2 \times 10^{-4} \text{ cpd/kg/keV}$
	EFFICIENCIES	Regularly measured by dedicated calibrations	<10 ⁻⁴ cpd/kg/keV
	BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV multiple-hits events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV
	SIDE REACTIONS	Muon flux variation measured at LNGS	<3×10 ⁻⁵ cpd/kg/keV

+ they cannot satisfy all the requirements of annual modulation signature

Thus, they cannot mimic the observed annual modulation effect

No role for μ in DAMA annual modulation result

✓ Direct µ interaction in DAMA/LIBRA set-up:

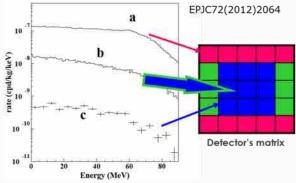
DAMA/LIBRA surface ≈0.13 m² µ flux @ DAMA/LIBRA ≈2.5 µ/day

It cannot mimic the signature: already excluded by R₉₀, by *multi-hits* analysis + different phase, etc.

- \checkmark Rate, R_n, of fast neutrons produced by μ :
 - $\Phi_{\rm u}$ @ LNGS \approx 20 μ m⁻²d⁻¹ (±1.5% modulated)
 - Annual modulation amplitude at low energy due to μ modulation:

$$S_{m}^{(\mu)} = R_{n} g \epsilon f_{\Delta E} f_{single} 2\% / (M_{setup} \Delta E)$$

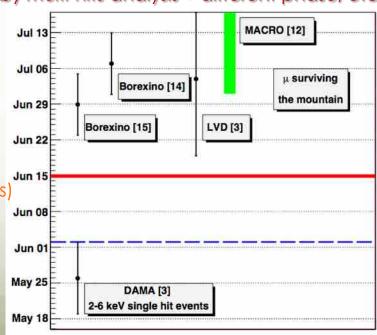
Moreover, this modulation also induces a variation in other parts of the energy spectrum and in the *multi-hits* events


Inconsistency of the phase between DAMA signal and μ modulation

 μ flux @ LNGS (MACRO, LVD, BOREXINO) $\approx 3 \cdot 10^{-4}$ m⁻²s⁻¹; modulation amplitude 1.5%; **phase**: July 7 ± 6 d, June 29 ± 6 d (Borexino)

The DAMA phase: May 26 ± 7 days (stable over 13 years)

The DAMA phase is 5.7σ far from the LVD/BOREXINO phases of muons (7.1 σ far from MACRO measured phase)


... many others arguments EPJC72(2012)2064, EPJC74(2014)3196

MonteCarlo simulation

$$S_m^{(\mu)} < (0.3-2.4) \times 10^{-5} \text{ cpd/kg/keV}$$

It cannot mimic the signature: already excluded by R₉₀, by *multi-hits* analysis + different phase, etc.

- •Contributions to the total neutron flux at LNGS; $\longrightarrow \Phi_k = \Phi_{0,k} (1 + \eta_k cos\omega (t t_k))$
- •Counting rate in DAMA/LIBRA for single-hit events, in the (2 6) keV energy region induced by:
- $\Phi_k = \Phi_{0,k} \left(1 + \eta_k cos\omega \left(t t_k \right) \right)$ $R_k = R_{0,k} \left(1 + \eta_k cos\omega \left(t t_k \right) \right)$

- > neutrons,
- > muons,
- > solar neutrinos.

EPJC 74 (2014) 3196 (also EPJC 56 (2008) 333, EPJC 72 (2012) 2064,IJMPA 28 (2013) 1330022)

Modulation amplitudes

	У							
	Source	$\Phi_{0,k}^{(n)}$ (neutrons cm ⁻² s ⁻¹)	η_k	t_k	$R_{0,k}$ (cpd/kg/keV)		$A_k = R_{0,k} \eta_k$ (cpd/kg/keV)	A_k/S_m^{exp}
SLOW	thermal n $(10^{-2} - 10^{-1} \text{ eV})$	1.08×10^{-6} [15]	$\stackrel{\simeq}{\sim} 0$ however $\ll 0.1 \ [2, 7, 8]$	-	< 8 × 10 ⁻⁶	[2, 7, 8]	≪ 8 × 10 ⁻⁷	≪ 7 × 10 ⁻⁵
neutrons	epithermal n (eV-keV)	2×10^{-6} [15]	$\simeq 0$ however $\ll 0.1 [2, 7, 8]$	=:	$< 3 \times 10^{-3}$	[2, 7, 8]	$\ll 3 \times 10^{-4}$	≪ 0.03
	fission, $(\alpha, n) \to n$ (1-10 MeV)	$\simeq 0.9 \times 10^{-7} [17]$	$\simeq 0$ however $\ll 0.1 [2, 7, 8]$	79	< 6 × 10 ⁻⁴	[2, 7, 8]	$\ll 6 \times 10^{-5}$	$\ll 5 \times 10^{-3}$
FAST neutrons	$\mu \rightarrow n$ from rock (> 10 MeV)	$\simeq 3 \times 10^{-9}$ (see text and ref. [12])	0.0129 [23]	end of June [23, 7, 8]	$\ll 7 \times 10^{-4}$	(see text and [2, 7, 8])	$\ll 9 \times 10^{-6}$	$\ll 8 \times 10^{-4}$
neutrons	$\mu \rightarrow$ n from Pb shield (> 10 MeV)	$\simeq 6 \times 10^{-9}$ (see footnote 3)	0.0129 [23]	end of June [23, 7, 8]	$\ll 1.4 \times 10^{-3}$	(see text and footnote 3)	$\ll 2 \times 10^{-5}$	$\ll 1.6 \times 10^{-3}$
	$ u \to n $ (few MeV)	$\simeq 3 \times 10^{-10}$ (see text)	0.03342 *	Jan. 4th *	$\ll 7 \times 10^{-5}$	(see text)	$\ll 2\times 10^{-6}$	$\ll 2 \times 10^{-4}$
	direct μ	$\Phi_0^{(\mu)} \simeq 20 \ \mu \ \mathrm{m}^{-2} \mathrm{d}^{-1} \ [20]$	0.0129 [23]	end of June [23, 7, 8]	$\simeq 10^{-7}$	[2, 7, 8]	$\simeq 10^{-9}$	$\simeq 10^{-7}$
	direct ν	$\Phi_0^{(\nu)} \simeq 6 \times 10^{10} \ \nu \ {\rm cm}^{-2} {\rm s}^{-1} \ [26]$	0.03342 *	Jan. 4th *	$\simeq 10^{-5}$	[31]	3×10^{-7}	3×10^{-5}

^{*} The annual modulation of solar neutrino is due to the different Sun-Earth distance along the year; so the relative modulation amplitude is twice the eccentricity of the Earth orbit and the phase is given by the perihelion.

All are negligible w.r.t. the annual modulation amplitude observed by DAMA/LIBRA and they cannot contribute to the observed modulation amplitude.

+ In no case neutrons (of whatever origin) can mimic the DM annual modulation signature since some of the **peculiar requirements of the signature** would fail, such as the neutrons would induce e.g. variations in all the energy spectrum, variation in the multiple hit events,... which were not observed.

Model-independent evidence by DAMA/Nal and DAMA/LIBRA

well compatible with several candidates in many astrophysical, nuclear and particle physics scenarios

Neutralino as LSP in various SUSY theories

Various kinds of WIMP candidates with several different kind of interactions Pure SI, pure SD, mixed + Migdal effect +channeling,... (from low to high mass)

a heavy v of the 4-th family

Pseudoscalar, scalar or mixed light bosons with axion-like interactions

WIMP with preferred inelastic scattering

Mirror Dark Matter

Light Dark Matter

Dark Matter (including some scenarios for WIMP) electron-interacting

Sterile neutrino

Self interacting Dark Matter

heavy exotic carditates, as "4th family atoms", ...

Elementary Black holes such as the Daemons

Kaluza Klein particles

... and more

Model-independent evidence by DAMA/Nal and DAMA/LIBRA

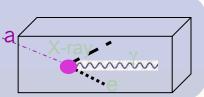
well compatible with several candidates in many astrophysical, nuclear and particle physics scenarios

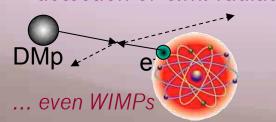
Just few <u>examples</u> of interpretation of the annual modulation in terms of candidate particles in <u>some scenarios</u>

Compatibility with several candidates; other ones are open

EPJC56(2008)333 IJMPA28(2013)1330022

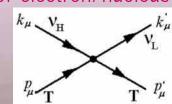
Some direct detection processes:


- Scatterings on nuclei
 - → detection of nuclear recoil energy


- Inelastic Dark Matter: W + N → W* + N
 - \rightarrow W has 2 mass states $\chi +$, $\chi \text{-}$ with δ mass splitting
 - \rightarrow Kinematical constraint for the inelastic scattering of χ on a nucleus

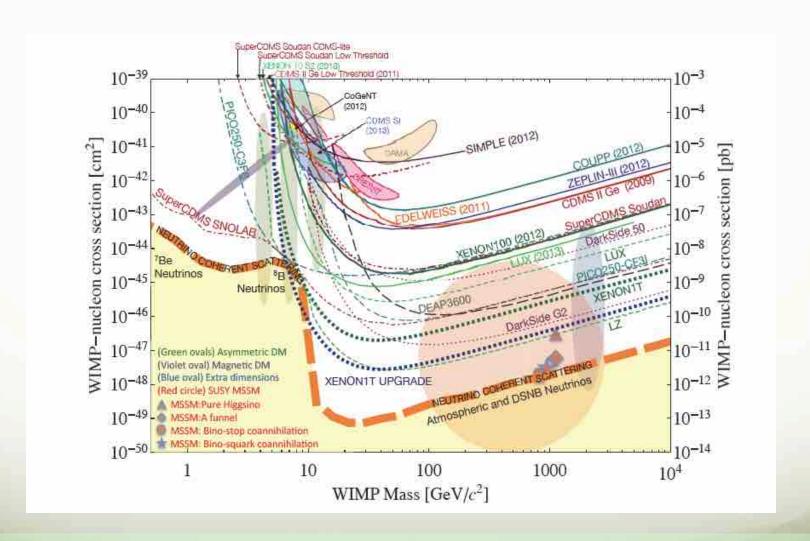
$$\frac{1}{2} \mu v^2 \ge \delta \Leftrightarrow v \ge v_{thr} = \sqrt{\frac{2\delta}{\mu}}$$

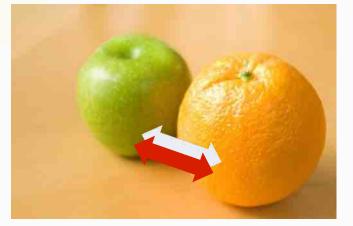
- Excitation of bound electrons in scatterings on nuclei
 - → detection of recoil nuclei + e.m. radiation
- Conversion of particle into e.m. radiation
 - \rightarrow detection of γ , X-rays, e



- Interaction only on atomic electrons
 - → detection of e.m. radiation

- Interaction of light DMp (LDM) on e⁻ or nucleus with production of a lighter particle
 - ightharpoonup detection of electron/nucleus recoil energy k_{μ} $\nu_{\rm H}$


e.g. sterile v


e.g. signals from these candidates are completely lost in experiments based on "rejection procedures" of the e.m. component of their rate

... also other ideas ...

Is it an "universal" and "correct" way to approach the problem of DM and comparisons?

No, it isn't. This is just a largely arbitrary/partial/incorrect exercise

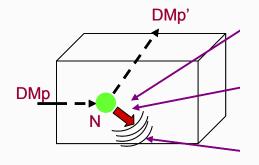
...models...

- Which particle?
- Which interaction coupling?
- Which Form Factors for each target-material?
- Which Spin Factor?
- Which nuclear model framework?
- Which scaling law?
- Which halo model, profile and related parameters?
- Streams?
- •

About interpretations and comparisons

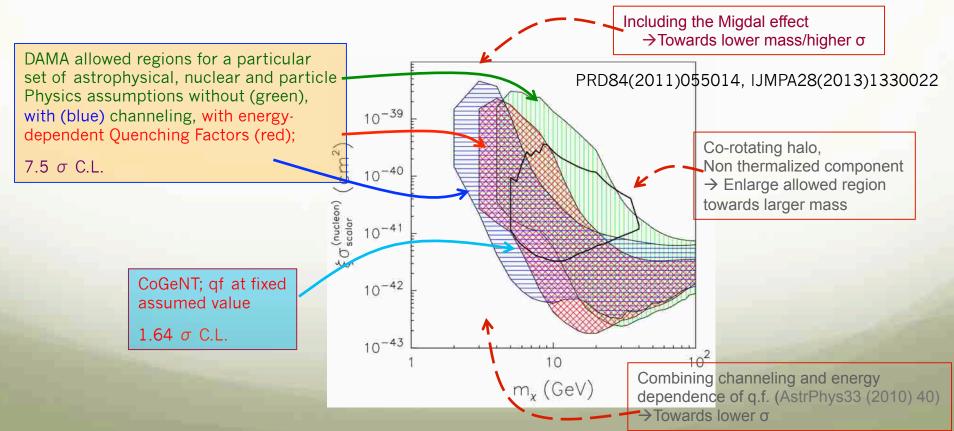
See e.g.: Riv.N.Cim.26 n.1(2003)1, IJMPD13(2004)2127, EPJC47(2006)263, IJMPA21(2006)1445, EPJC56(2008)333, PRD84(2011)055014, IJMPA28(2013)1330022

...and experimental aspects...


- Exposures
- Energy threshold
- Detector response (phe/keV)
- Energy scale and energy resolution
- Calibrations
- Stability of all the operating conditions.
- Selections of detectors and of data.
- Subtraction/rejection procedures and stability in time of all the selected windows and related quantities
- Efficiencies
- Definition of fiducial volume and nonuniformity
- Quenching factors, channeling, ...
- •

Uncertainty in experimental parameters, as well as necessary assumptions on various related astrophysical, nuclear and particle-physics aspects, affect all the results at various extent, both in terms of exclusion plots and in terms of allowed regions/volumes. Thus comparisons with a fixed set of assumptions and parameters' values are intrinsically strongly uncertain.

No experiment can be directly compared in model independent way with DAMA


... an example in literature...

Case of DM particles inducing elastic scatterings on target-nuclei, SI case

Regions in the nucleon cross section vs DM particle mass plane

- Some velocity distributions and uncertainties considered.
- The DAMA regions represent the domain where the likelihood-function values differ more than 7.5σ from the null hypothesis (absence of modulation).
- For CoGeNT a fixed value for the Ge quenching factor and a Helm form factor with fixed parameters are assumed.
- The CoGeNT region includes configurations whose likelihood-function values differ more than 1.64σ from the null hypothesis (absence of modulation). This corresponds roughly to 90% C.L. far from zero signal.

Scratching Below the Surface of the Most General Parameter Space (S.

Scopel arXiv:1505.01926)

Most general approach: consider ALL possible NR couplings, including those depending on velocity and momentum

 $\mathcal{O}_1 = \mathbb{I}_{\chi} \mathbb{I}_N$

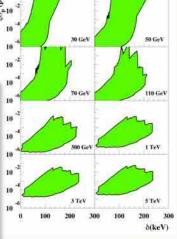
- A much wider parameter space opens up $\mathcal{O}_2 = (v^{\perp})^2, \\ \mathcal{O}_3 = i\vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}\right), \\ \mathcal{O}_4 = \vec{S}_{\chi} \cdot \vec{S}_N, \\ \mathcal{O}_5 = i\vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}\right).$
- First explorations show that indeed large rooms for compatibility can be achieved $\mathcal{O}_{5} = i\vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}\right),$ First explorations $\mathcal{O}_{6} = \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right) \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}\right)$ $\mathcal{O}_{7} = \vec{S}_{N} \cdot \vec{v}^{\perp},$ $\mathcal{O}_{8} = \vec{S}_{\chi} \cdot \vec{v}^{\perp},$ $\mathcal{O}_{9} = i\vec{S}_{\chi} \cdot \left(\vec{S}_{N} \times \frac{\vec{q}}{m_{N}}\right),$ $\mathcal{O}_{10} = i\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}},$

... and much more considering experimental and theoretical uncertainties

 $\mathcal{O}_{11} = i \vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{\chi}}.$

Other examples

DMp with preferred inelastic interaction: $\chi^- + N \rightarrow \chi^+ + N$

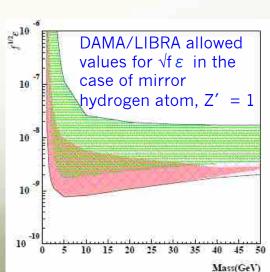

- iDM mass states $\chi^{\scriptscriptstyle +}$, $\chi^{\scriptscriptstyle -}$ with δ mass splitting
- Kinematic constraint for iDM:

$$\frac{1}{2}\mu v^2 \ge \delta \Leftrightarrow v \ge v_{thr} = \sqrt{\frac{2\delta}{\mu}}$$

iDM interaction on TI nuclei of the NaI(TI) dopant?
PRL106(2011)011301

- For large splittings, the dominant scattering in NaI(TI) can occur off of Thallium nuclei, with A~205, which are present as a dopant at the 10-3 level in NaI(TI) crystals.
- large splittings do not give rise to sizeable contribution on Na, I, Ge, Xe, Ca, O, ... nuclei.

DAMA/NaI+DAMA/LIBRA Slices from the 3d allowed volume in given scenario

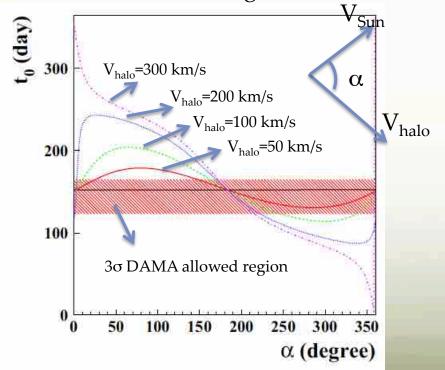

Fund. Phys. 40(2010)900

Mirror Dark Matter

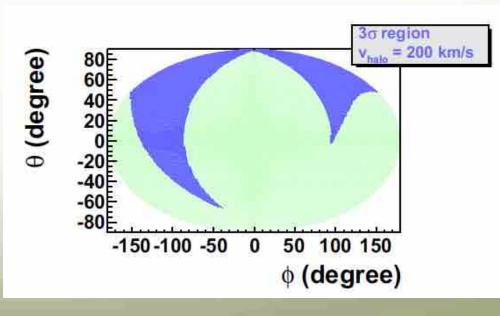
Asymmetric mirror matter: mirror parity spontaneously broken ⇒ mirror sector becomes a heavier and deformed copy of ordinary sector (See EPJC75(2015)400)

- Interaction portal: photon mirror photon kinetic mixing $\frac{\epsilon}{2}F^{\mu\nu}F'_{\mu\nu}$
- mirror atom scattering of the ordinary target nuclei in the NaI(TI) detectors of DAMA/LIBRA set-up with the Rutherford-like cross sections.

 $\sqrt{f} \cdot \epsilon$ coupling const. and fraction of mirror atom



DAMA annual modulation effect and Symmetric mirror matter Eur. Phys. J. C (2017) 77

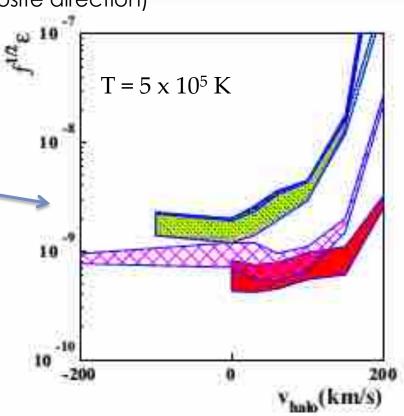

Symmetric mirror matter:

- halo composed by a bubble of Mirror particles of different species; Sun is travelling across the bubble which is moving in the Galactic Frame (GF);
- the mirror particles in the bubble have Maxwellian velocity distribution in a frame where the bubble is at rest; cold and hot bubble with temp from 10^4 K to 10^8 K)
- · interaction via photon mirror photon kinetic mixing

Examples of expected phase of the annual modulation signal

The blue regions correspond to directions of the halo velocities in GC (θ , ϕ) giving a phase compatible at 3σ with DAMA phase

DAMA annual modulation effect and Symmetric mirror matter Eur. Phys. J. C (2017) 77


Symmetric mirror matter:

- Results refers to halo velocities parallel or anti-parallel to the Sun ($\alpha = 0$, π). For these configurations the expected phase is June 2
- The only parameter whose value will be varied in the analysis is the $V_{halo}\,$ module (positive velocity will correspond to halo moving in the same direction of the Sun while negative velocity will correspond to opposite direction)

Mirror matter composition	H(%)	He (%)	C (%)	O(%)	Fe (%)
H', He'	25	75	Ξ	51	<u>es</u> ;
H', He', C', O'	12.5	75.	7.	5.5	-
H', He', C', O', Fe'	20	74	0.9	5.	0.1

different scenarios

$$\sqrt{f} \cdot \epsilon$$
 coupling const. and DM fraction as mirror atom

Many configurations and halo models favoured by the DAMA annual modulation effect corresponds to couplings values well compatible with cosmological bounds.

Perspectives for the future

Other signatures?

- Diurnal effects
- Second order effects
- Shadow effects
- Directionality
- •

Diurnal effects in DAMA/LIBRA-phase1

EPJC 74 (2014) 2827

A diurnal effect with the sidereal time is expected for DM because of Earth rotation

Velocity of the detector in the terrestrial laboratory: $ec{v}_{lab}(t) = ec{v}_{LSR} + ec{v}_{\odot} + ec{v}_{rev}(t) + ec{v}_{rot}(t),$

Since:

-
$$|\vec{v}_s| = |\vec{v}_{LSR} + \vec{v}_{\odot}| \approx 232 \pm 50$$
 km/s,

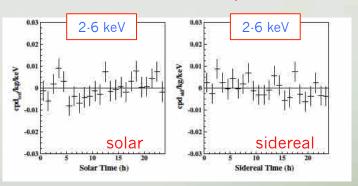
- $|\vec{v}_{rev}(t)| \approx 30 \text{ km/s}$
- $|ec{v}_{rot}(t)| pprox 0.34 \ \mathrm{km/s}$ at LNGS

$$v_{lab}(t) \simeq v_s + \hat{v}_s \cdot \vec{v}_{rev}(t) + \hat{v}_s \cdot \vec{v}_{rot}(t).$$

Expected signal counting rate in a given k-th energy bin:


$$S_{k}\left[v_{lab}(t)\right] \simeq S_{k}\left[v_{s}\right] + \left[\frac{\partial S_{k}}{\partial v_{lab}}\right]_{v_{s}}\left[V_{Earth}B_{m}\cos\omega(t-t_{0}) + V_{r}B_{d}\cos\omega_{rot}(t-t_{d})\right]$$

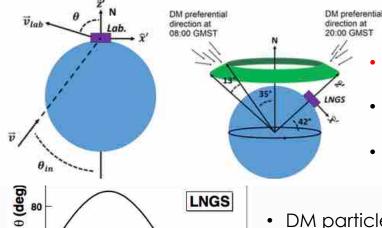
The ratio R_{dv} is a model independent constant:


$$R_{dy} = rac{S_d}{S_m} = rac{V_r B_d}{V_{Earth} B_m} \simeq 0.016$$
 at LNGS latitude

- Observed annual modulation amplitude in DAMA/LIBRA-phase1 in the (2-6) keV energy interval: (0.0097 ± 0.0013) cpd/kg/keV
- Thus, the expected value of the diurnal modulation amplitude is $\approx 1.5 \times 10^{-4}$ cpd/kg/keV.
- When fitting the *single-hit* residuals with a cosine function with period fixed at 24 h and phase at 14 h: all the diurnal modulation amplitudes A_d are compatible with zero at the present level of sensitivity.

 A_d (2-6 keV) < 1.2 × 10⁻³ cpd/kg/keV (90%CL)

Model-independent result on possible diurnal effect in DAMA/LIBRA-phase1

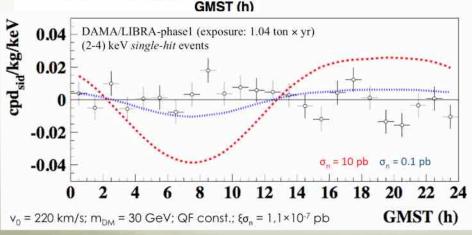

Present experimental sensitivity is not yet enough for the expected diurnal modulation amplitude derived from the DAMA/LIBRA-phase1 observed effect.

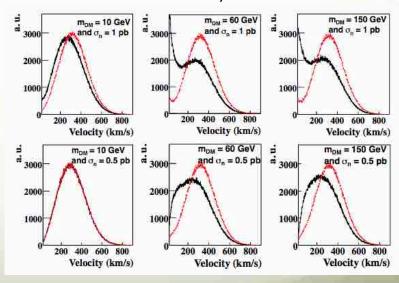
larger exposure DAMA/LIBRA-phase2 (+lower energy threshold) offers increased sensitivity to such an effect

Other signatures?

- Diurnal effects
- Second order effects
- Shadow effects
- Directionality
- •

Earth shadowing effect with DAMA/LIBRA-phase1

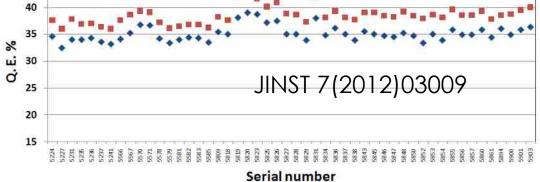

10 12 14 16 18 20 22 24


40

20

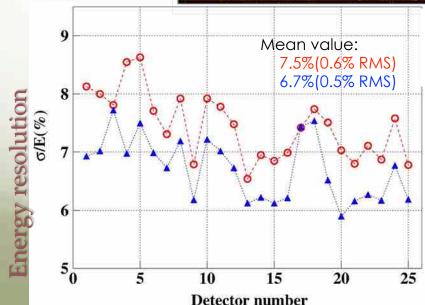
Earth Shadow Effect could be expected for DM candidate particles inducing nuclear recoils

- can be pointed out only for candidates with high crosssection with ordinary matter (low DM local density)
- would be induced by the variation during the day of the Earth thickness crossed by the DM particle in order to reach the experimental set-up
- DM particles crossing Earth lose their energy
- DM velocity distribution observed in the laboratory frame is modified as function of time (GMST 8:00 black; GMST 20:00 red)



EPJC75(2015)239

Taking into account the DAMA/LIBRA DM annual modulation result, allowed regions in the ξ vs σ_n plane for each m_{DM} .



45

The limits are at 90% C.L. (Bo/kg) (Bq/kg) (Bo/kg) (mBq/kg (mBo/kg) (mBq/kg) 0.12 Standard deviation

σ/E @ 59.5 keV for each detector with new PMTs with higher quantum efficiency (blu points) and with previous PMT EMI-Electron Tube (red points).

The light responses

Previous PMTs: 5.5-7.5 ph.e./keV New PMTs: up to 10 ph.e./keV

- To study the nature of the particles and features of related astrophysical, nuclear and particle physics aspects, and to investigate second order effects
- Special data taking for other rare processes

DAMA/LIBRA phase 2 – data taking

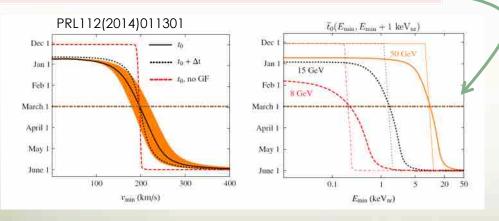
- ✓ Fall 2012: new preamplifiers installed + special trigger modules.
- ✓ Calibrations 5 a.c.: ≈ 1.03 x 10⁸ events from sources
- ✓ Acceptance window eff. 5 a.c.: ≈ 7 x 10⁷ events (≈2.8 x 10⁶ events/keV)

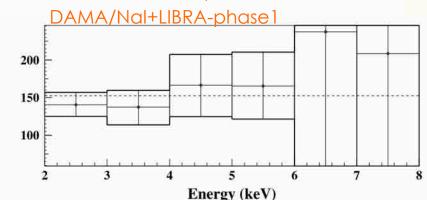
Annual Cycles	Period	Mass (kg)	Exposure	(α-β²)
I	Dec 2010 - Sept. 2011		commissioning	
II	Nov. 2, 2011 – Sept. 11, 2012	242.5	62917	0.519
Ш	Oct. 8, 2012 – Sept. 2, 2013	242.5	60586	0.534
IV	Sept. 8, 2013 – Sept. 1, 2014	242.5	73792	0.479
V	Sept. 1, 2014 – Sept. 9, 2015	242.5	71180	0.486
VI	Sept. 10, 2015 – Sept. 6, 2016	242.5	≈70000 (under analysis)	MARY
VII	Sept 2016 –	242.5	running	PRELIMINARY

Exposure expected for the first data release of DAMA/LIBRA-phase2: ≈ 1 ton x yr

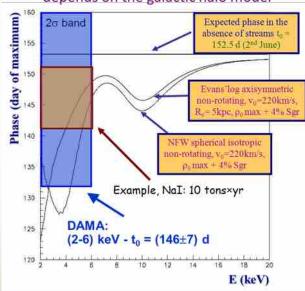
Features of the DM signal

* (day)


The importance of studying second order effects and the annual modulation phase


High exposure and lower energy threshold can allow further investigation on:

- the nature of the DM candidates
- possible diurnal effects on the sidereal time
- astrophysical models


The annual modulation phase depends on:

- Presence of streams (as SagDEG and Canis Major) in the Galaxy
- Presence of caustics
- Effects of gravitational focusing of the Sun

The effect of the streams on the phase depends on the galactic halo model

A step towards such investigations:

DAMA/LIBRA-phase2 running with lower energy threshold

+ further possible improvements (DAMA/LIBRA-phase3) and DAMA/1ton

Possible DAMA/LIBRA-phase3

- The light collection of the detectors can further be improved
- Light yields and the energy thresholds will improve accordingly


The strong interest in the low energy range suggests the possibility of a new development of **high Q.E. PMTs** with **increased radiopurity** to directly couple them to the DAMA/LIBRA crystals, **removing** the special radio-pure quartz (Suprasil B) light guides (10 cm long), which act also as optical window.

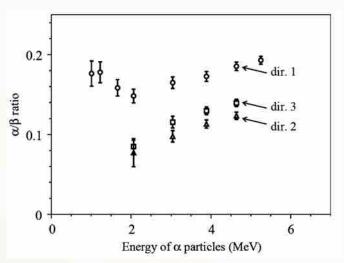
- Q.E. around 35-40% @ 420 nm (NaI(TI) light)
- radiopurity at level of 5 mBq/PMT (⁴⁰K),
 3-4 mBq/PMT (²³²Th),
 3-4 mBq/PMT (²³⁸U),
 1 mBq/PMT (²²⁶Ra),
 2 mBq/PMT (⁶⁰Co).

R&D efforts to obtain PMTs matching the best performances... feasible

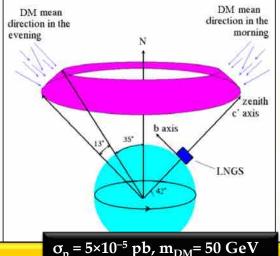
No longer need for light guides (a 30-40% improvement in the light collection is expected)

Other signatures?

- Diurnal effects
- Second order effects
- Shadow effects
- Directionality


•

Directionality technique with crystals


N. Cim. C15(1992)475, EPJC28(2003)203, EPJC73(2013)2276

- Only for candidates inducing just recoils
- Identification of the Dark Matter particles by exploiting the non-isotropic recoil distribution correlated to the Earth velocity

The ADAMO project: Study of the directionality approach with ZnWO₄ anisotropic detectors

Nuclear recoils are expected to be strongly correlated with the DM impinging direction This effect can be pointed out through the study of the variation in the response of anisotropic scintillation detectors during sidereal day



The light output and the pulse shape of ZnWO₄ detectors depend on the direction of the impinging particles with respect to the crystal axes

Both these anisotropic features can provide two independent ways to exploit the directionality approach

These and others competitive characteristics of ZnWO₄ detectors could permit to reach sensitivity comparable with that of the DAMA/LIBRA positive result

Presently running at ENEA-Casaccia with neutron generator to measure anisotropy at keV range

Conclusions

- Positive evidence for the presence of DM particles in the galactic halo supported at 9.3σ C.L. (14 annual cycles DAMA/Nal and DAMA/LIBRA-phase1: 1.33 ton × yr)
- Modulation parameters determined with high precision
- New investigation on different peculiarities of the DM signal exploited (Diurnal Modulation and Earth Shadow Effect)
- New corollary analysis on Mirror Dark Matter
- Full sensitivity to many kinds of DM candidates and interactions types (both inducing recoils and/or e.m. radiation), full sensitivity to low and high mass candidates

- DAMA/LIBRA phase2 in data taking at lower software energy threshold (below 2 keV)
- Continuing investigations of rare processes other than DM
- DAMA/LIBRA phase3 R&D in progress
- R&D for a possible DAMA/1ton set-up, proposed by DAMA since 1996, continuing
- Study of ZnWO₄ scintillator for exploiting directionality technique in progress