
First model-independent results from DAMA/LIBRA-phase2

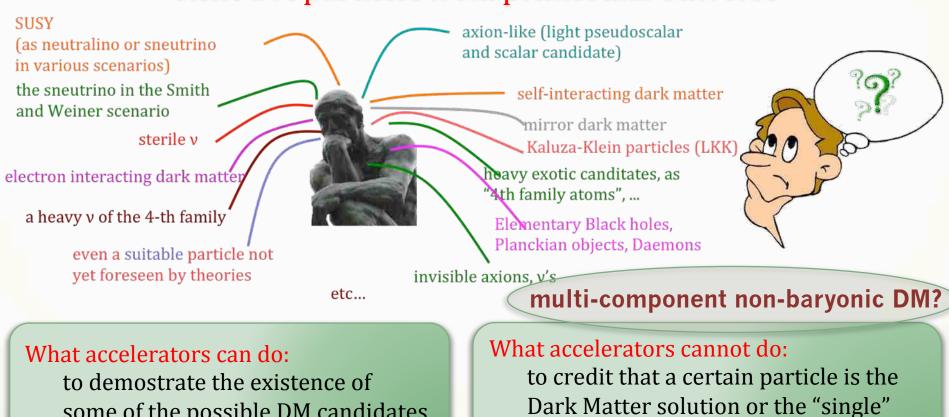
X And B

P. Belli INFN – Roma Tor Vergata

ICNFP 2018 Kolymbari, Crete, Greece July 4-12, 2018

DAMA set-ups an observatory for rare processes @ LNGS

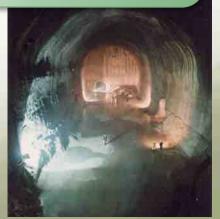
Collaboration:


Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing

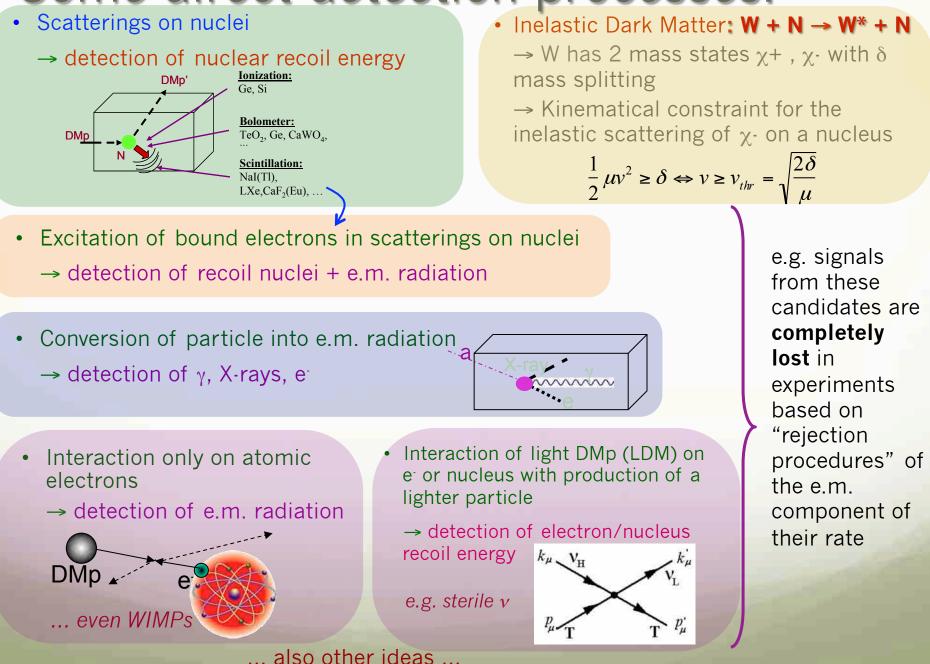
- + by-products and small scale expts.: INR-Kiev + other institutions
- + neutron meas.: ENEA-Frascati, ENEA-Casaccia

+ in some studies on ββ decays (DST-MAE and Inter-Universities project): IIT Kharagpur and Ropar, India

web site: http://people.roma2.infn.it/dama


Relic DM particles from primordial Universe

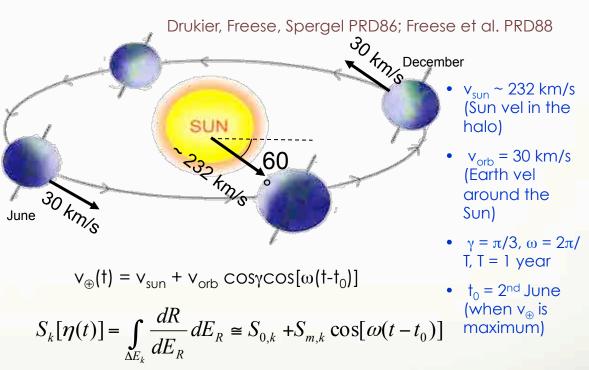
+ DM candidates and scenarios exist (even for neutralino candidate) on which accelerators cannot give any information


some of the possible DM candidates

DM direct detection method using a model independent approach and a low-background widely-sensitive target material

Dark Matter particle solution...

Some direct detection processes:



The annual modulation: a model independent signature for the investigation of DM particles component in the galactic halo

With the present technology, the annual modulation is the main model independent signature for the DM signal. Although the modulation effect is expected to be relatively small a suitable large-mass, low-radioactive set-up with an efficient control of the running conditions can point out its presence.

Requirements:

- 1) Modulated rate according cosine
- 2) In low energy range
- 3) With a proper period (1 year)
- 4) With proper phase (about 2 June)
- 5) Just for single hit events in a multidetector set-up
- 6) With modulation amplitude in the region of maximal sensitivity must be <7% for usually adopted halo distributions, but it can be larger in case of some possible scenarios

the DM annual modulation signature has a different origin and peculiarities (e.g. the phase) than those effects correlated with the seasons

To mimic this signature, spurious effects and side reactions must not only - obviously - be able to account for the whole observed modulation amplitude, but also to satisfy contemporaneously all the requirements

The pioneer DAMA/Nal: ≈100 kg highly radiopure Nal(Tl)

Performances:

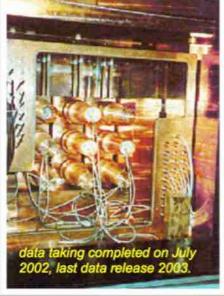
N.Cim.A112(1999)545-575, EPJC18(2000)283, Riv.N.Cim.26 n. 1(2003)1-73, IJMPD13(2004)2127

Results on rare processes:

- Possible Pauli exclusion principle violation
- CNC processes
- Electron stability and non-paulian transitions in lodine atoms (by L-shell)
- Search for solar axions
- Exotic Matter search
- Search for superdense nuclear matter
- Search for heavy clusters decays

Results on DM particles:

- PSD
- Investigation on diurnal effect
- Exotic Dark Matter search
- Annual Modulation Signature


PLB389(1996)757 N.Cim.A112(1999)1541 PRL83(1999)4918

ure PLB424(1998)195, PLB450(1999)448, PRD61(1999)023512, PLB480(2000)23, EPJC18(2000)283, PLB509(2001)197, EPJC23(2002)61, PRD66(2002)043503, Riv.N.Cim.26 n.1 (2003)1, IJMPD13(2004)2127, IJMPA21(2006)1445, EPJC47(2006)263, IJMPA22(2007)3155, EPJC53(2008)205, PRD77(2008)023506, MPLA23(2008)2125

Model independent evidence of a particle DM component in the galactic halo at 6.3 σ C.L.

total exposure (7 annual cycles) 0.29 ton×yr

PLB408(1997)439 PRC60(1999)065501 PLB460(1999)235 PLB515(2001)6 EPJdirect C14(2002)1 EPJA23(2005)7 EPJA24(2005)51

The pioneer DAMA/Nal: ≈100 kg highly radiopure Nal(TI)

The DAMA/LIBRA set-up ~250 kg NaI(Tl) (Large sodium Iodide Bulk for RAre processes)

Results

Perforn

- Poss
- CNC
 Elect
- in lo
- Sear
 Exot
- Sear
- Sear

Results

- PSD
- Inve Residual contaminations in the new
- Exot
- Ann

DAMA/LIBRA Nal(TI) detectors: ²³²Th,

²³⁸U and ⁴⁰K at level of 10⁻¹² g/g

- Radiopurity, performances, procedures, etc.: NIMA592(2008)297, JINST 7 (2012) 03009
- Results on DM particles,
 - Annual Modulation Signature: EPJC56(2008)333, EPJC67(2010)39, EPJC73(2013)2648.

 Related results: PRD84(2011)055014, EPJC72(2012)2064, IJMPA28(2013)1330022, EPJC74(2014)2827, EPJC74(2014)3196, EPJC75(2015)239, EPJC75(2015)400, IJMPA31(2016) dedicated issue, EPJC77(2017)83
 Results on rare processes: DED a 50 10 (2020)2027

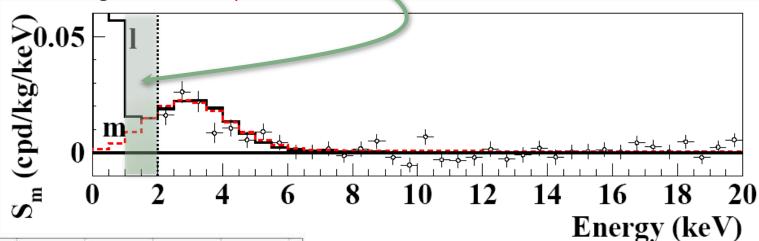
- PEPv: EPJC62(2009)327, arXiv1712.08082;
- o CNC: EPJC72(2012)1920;
- o IPP in 241 Am: EPJA49(2013)64

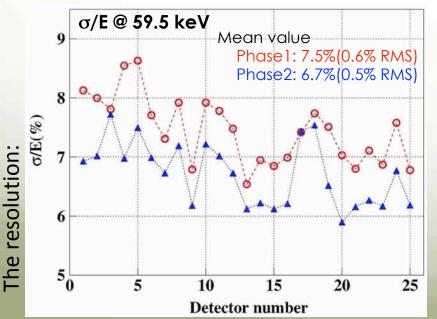
DAMA/LIBRA–phase1 (7 annual cycles, 1.04 ton×yr) confirmed the model-independent evidence of DM: reaching 9.3σ C.L.

DAMA/LIBRA-phase2

Upgrade on Nov/Dec 2010: all PMTs replaced with new ones of higher Q.E.

JINST 7(2012)03009


Q.E. of the new PMTs: 33 - 39% @ 420 nm 36 - 44% @ peak



DAMA/LIBRA-phase2

Lowering software energy threshold below 2 keV:

- to study the nature of the particles and features of astrophysical, nuclear and particle physics aspects, and to investigate 2nd order effects
- special data taking for other rare processes

The contaminations:

	²²⁶ Ra (Bq/kg)	²³⁵ U (mBq/kg)	²²⁸ Ra (Bq/kg)	²²⁸ Th (mBq/kg)	⁴⁰ K (Bq/kg)
Mean Contamination	0.43	47	0.12	83	0.54
Standard Deviation	0.06	10	0.02	17	0.16

The light responses:

DAMA/LIBRA-phase1: DAMA/LIBRA-phase2:

5.5 – 7.5 ph.e./keV 6-10 ph.e./keV

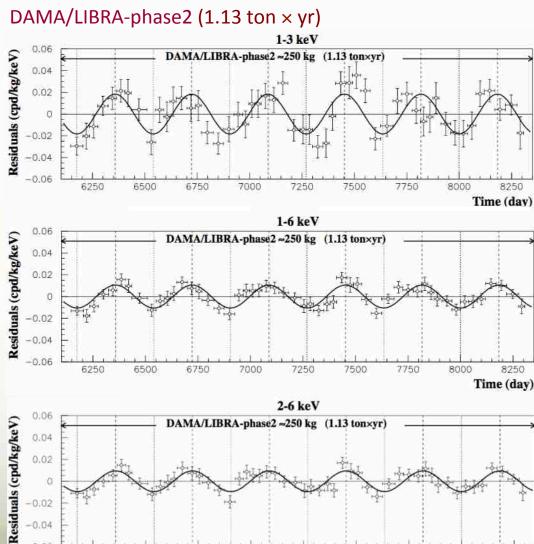
DAMA/LIBRA-phase2 data taking

Second upgrade at end of 2010: all PMTs replaced with new ones of higher Q.E.

Energy resolution @ 60 keV mean value:

prev. PMTs7.5%(0.6% RMS)new HQE PMTs6.7%(0.5% RMS)

- ✓ Fall 2012: new
 preamplifiers installed
 + special trigger
 modules.
- ✓ Calibrations 6 a.c.: ≈ 1.3
 × 10⁸ events from sources
- ✓ Acceptance window eff.
 6 a.c.: ≈ 3.4 × 10⁶ events
 (≈1.4 × 10⁵ events/keV)


Annual Cycles	Period	Mass (kg)	Exposure	(α-β ²)		
I	Dec 23, 2010 - Sept. 9, 2011		commissioning			
II	Nov. 2, 2011 - Sept. 11, 2012	242.5	62917	0.519		
III	Oct. 8, 2012 - Sept. 2, 2013	242.5	60586	0.534		
IV	Sept. 8, 2013 - Sept. 1, 2014	242.5	73792	0.479		
V	Sept. 1, 2014 - Sept. 9, 2015	242.5	71180	0.486		
VI	Sept. 10, 2015 - Aug. 24, 2016	242.5	67527	0.522		
VII	Sept. 7, 2016 - Sept. 25, 2017	242.5	75135	0.480		
	CyclesIIIIVVVIVII	CyclesIDec 23, 2010 - Sept. 9, 2011IINov. 2, 2011 - Sept. 11, 2012IIIOct. 8, 2012 - Sept. 2, 2013IVSept. 8, 2013 - Sept. 1, 2014VSept. 1, 2014 - Sept. 9, 2015VISept. 10, 2015 - Aug. 24, 2016VIISept. 7, 2016 - Sept. 25, 2017	Cycles(kg)IDec 23, 2010 - Sept. 9, 2011IINov. 2, 2011 - Sept. 11, 2012IIIOct. 8, 2012 - Sept. 2, 2013IVISept. 8, 2013 - Sept. 1, 2014VSept. 1, 2014 - Sept. 9, 2015VISept. 10, 2015 - Aug. 24, 2016VIISept. 7, 2016 - 	Cycles (kg) I Dec 23, 2010 - Sept. 9, 2011 commissioning II Nov. 2, 2011 - Sept. 11, 2012 242.5 62917 III Oct. 8, 2012 - Sept. 2, 2013 242.5 60586 IV Sept. 8, 2013 - Sept. 1, 2014 242.5 73792 V Sept. 1, 2014 - Sept. 9, 2015 242.5 71180 VI Sept. 10, 2015 - Aug. 24, 2016 242.5 67527 VII Sept. 7, 2016 - Sept. 25, 2017 242.5 75135		

Exposure first data release of DAMA/LIBRA-phase2: **1.13 ton × yr**

Exposure DAMA/NaI+DAMA/LIBRA-phase1+phase2: **2.46 ton × yr**

DM model-independent Annual Modulation Result

experimental residuals of the single-hit scintillation events rate vs time and energy

-0.04

-0.06

6250

6500

6750

7000

7250

7500

7750

Absence of modulation? No

- 1-3 keV: χ^2 /dof=127/52 \Rightarrow P(A=0) = 3×10⁻⁸
- 1-6 keV: χ^2 /dof=150/52 \Rightarrow P(A=0) = 2×10⁻¹¹
- 2-6 keV: χ^2 /dof=116/52 \Rightarrow P(A=0) = 8×10⁻⁷

Fit on DAMA/LIBRA-phase2

Acos[ω (t-t₀)]; continuous lines: $t_0 = 152.5 d$, T = 1.00 y

1-3 keV

A=(0.0184±0.0023) cpd/kg/keV χ^2 /dof = 61.3/51 **8.0** σ **C.L.**

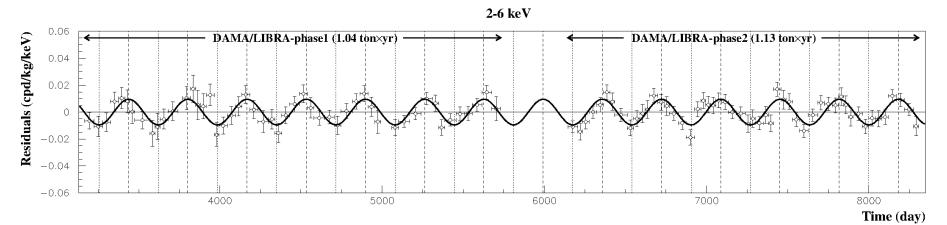
1-6 keV

A=(0.0105±0.0011) cpd/kg/keV χ^2 /dof = 50.0/51 **9.5** σ **C.L.**

2-6 keV

A=(0.0095±0.0011) cpd/kg/keV χ^2 /dof = 42.5/51 **8.6** σ **C.L.**

The data of DAMA/LIBRA-phase2 favor the presence of a modulated behavior with proper features at 9.5 oc.L.


8250 Time (day)

8000

DM model-independent Annual Modulation Result

experimental residuals of the single-hit scintillation events rate vs time and energy

DAMA/LIBRA-phase1+DAMA/LIBRA-phase2 (2.17 ton × yr)

Absence of modulation? No

• 2-6 keV: χ^2 /dof=199.3/102 \Rightarrow P(A=0) =2.9×10⁻⁸

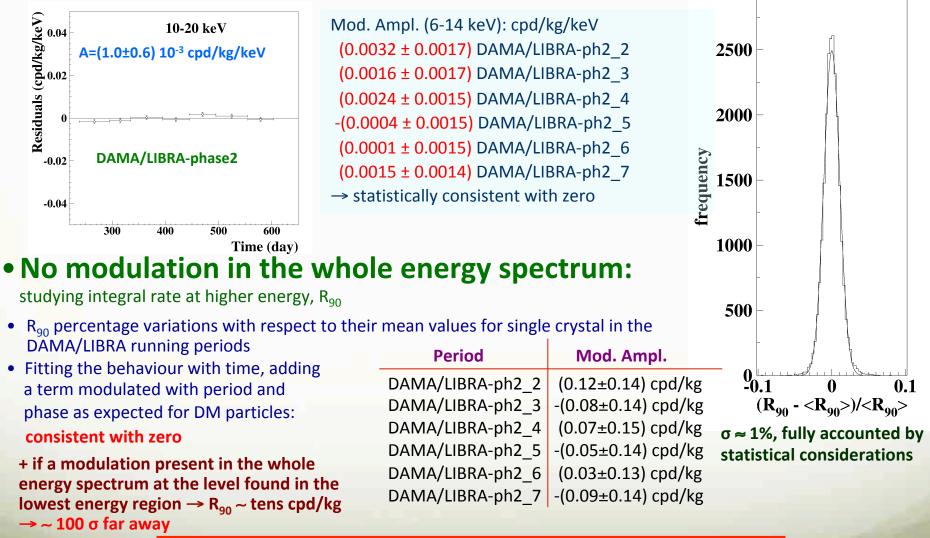
Fit on DAMA/LIBRA-phase1+ DAMA/LIBRA-phase2 Acos[ω (t-t₀)]; continuous lines: t₀ = 152.5 d, T = 1.00 y **2-6 keV** A=(0.0095±0.0008) cpd/kg/keV χ^2 /dof = 71.8/101 **11.9\sigma C.L.**

The data of DAMA/LIBRA-phase1 +DAMA/LIBRA-phase2 favor the presence of a modulated behavior with proper features at 11.9 σ C.L.

Releasing period (T) and phase (t₀) in the fit

	ΔΕ	A(cpd/kg/keV)	T=2π/ω (yr)	t _o (day)	C.L.
	(1-3) keV	0.0184±0.0023	1.0000±0.0010	153±7	8.0σ
DAMA/LIBRA-ph2	(1-6) keV	0.0106±0.0011	0.9993±0.0008	148±6	9.6 σ
	(2-6) keV	0.0096±0.0011	0.9989±0.0010	145±7	8.7 σ
DAMA/LIBRA-ph1 + DAMA/LIBRA-ph2	(2-6) keV	0.0096±0.0008	0.9987±0.0008	145±5	12.0 σ
DAMA/Nal + DAMA/LIBRA-ph1 + DAMA/LIBRA-ph2	(2-6) keV	0.0103±0.0008	0.9987±0.0008	145±5	12.9 σ

$Acos[\omega(t-t_0)]$

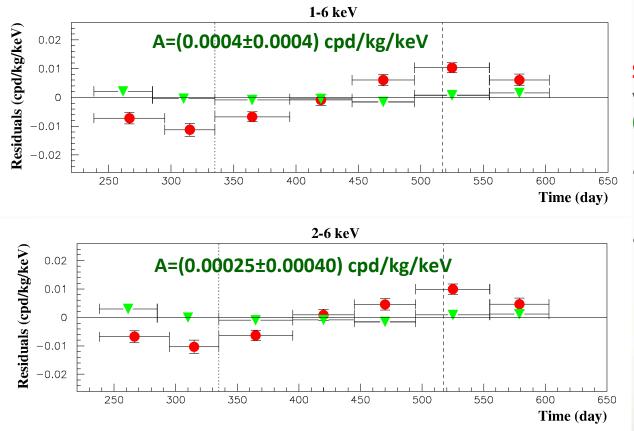

DAMA/Nal (0.29 ton x yr) DAMA/LIBRA-ph1 (1.04 ton x yr) DAMA/LIBRA-ph2 (1.13 ton x yr)

total exposure = 2.46 ton×yr

Rate behaviour above 6 keV

DAMA/LIBRA-phase2

No Modulation above 6 keV



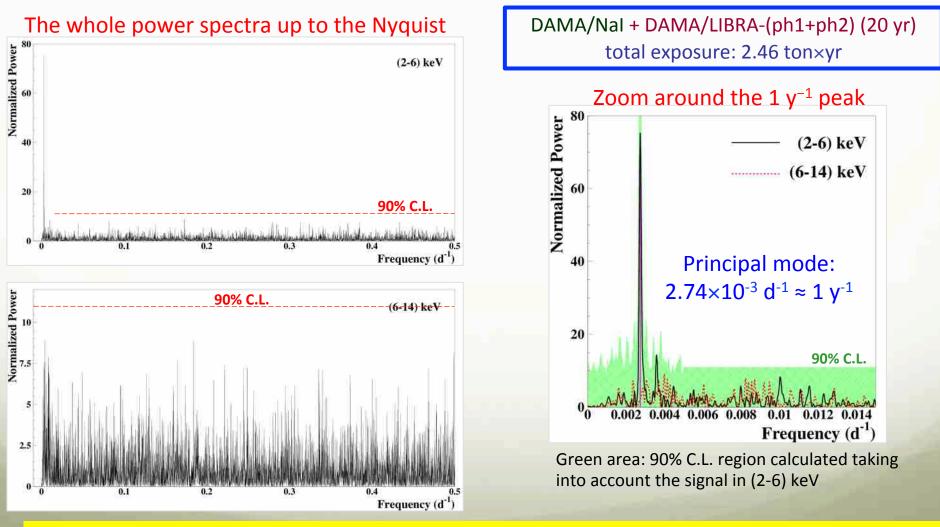
No modulation above 6 keV This accounts for all sources of bckg and is consistent with the studies on the various components

DM model-independent Annual Modulation Result

DAMA/LIBRA-phase2 (1.13 ton × yr)

Multiple hits events = Dark Matter particle "switched off"

Single hit residual rate (red) vs Multiple hit residual rate (green)

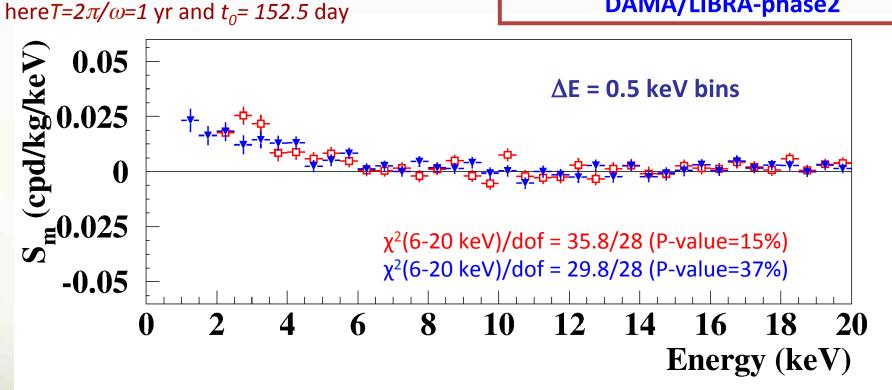

- Clear modulation in the single hit events;
- No modulation in the residual rate of the multiple hit events

This result offers an additional strong support for the presence of DM particles in the galactic halo further excluding any side effect either from hardware or from software procedures or from background

The analysis in frequency

(according to PRD75 (2007) 013010)

To perform the Fourier analysis of the data in a wide region of frequency, the single-hit scintillation events have been grouped in 1 day bins


Clear annual modulation in (2-6) keV + only aliasing peaks far from signal region

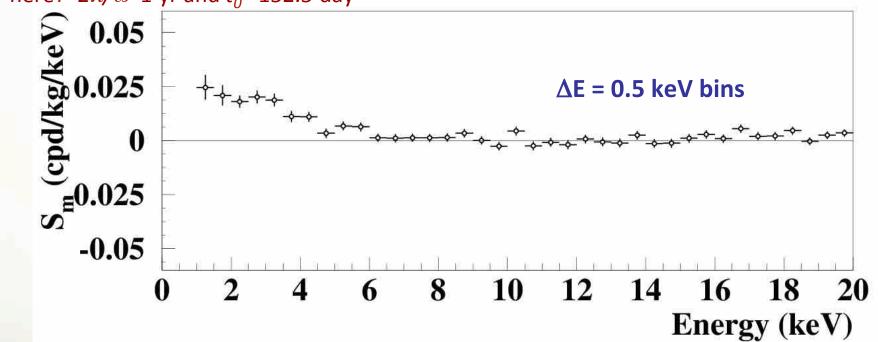
Energy distribution of the modulation amplitudes

Max-likelihood analysis

$$R(t) = S_0 + S_m \cos\left[\omega \left(t - t_0\right)\right]$$

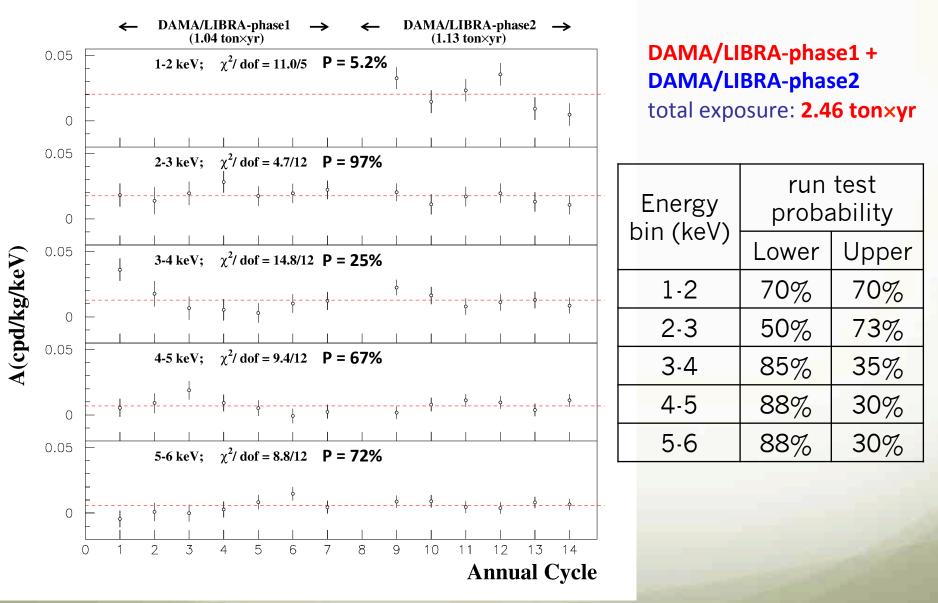
DAMA/Nal + DAMA/LIBRA-phase1 vs DAMA/LIBRA-phase2

The two S_m energy distributions obtained in DAMA/Nal+DAMA/LIBRA-ph1 and in DAMA/LIBRA-ph2 are consistent in the (2–20) keV energy interval:

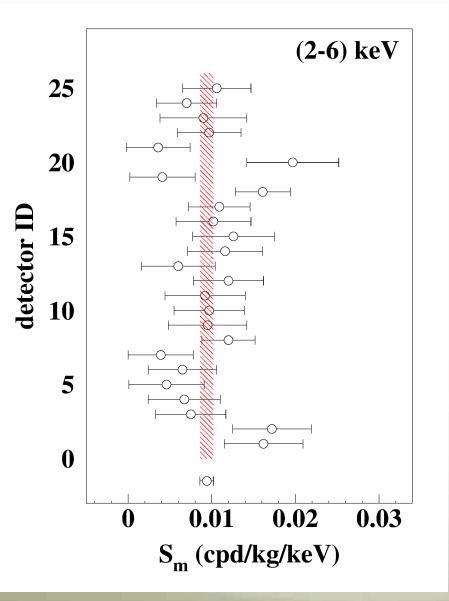

$x^2 = \sum \{x = x \}^2 \{1 = 2 = 2\}$	(2-20) keV	χ²/d.o.f.=32.7/36	(P=63%)	
$\chi^2 = \Sigma (r_1 - r_2)^2 / (\sigma_1^2 + \sigma_2^2)$	(2-6) keV	χ²/d.o.f.=10.7/8	(P=22%)	

Energy distribution of the modulation amplitudes

Max-likelihood analysis


DAMA/Nal + DAMA/LIBRA-phase1 + DAMA/LIBRA-phase2 (2.46 ton×yr)

A clear modulation is present in the (1-6) keV energy interval, while S_m values compatible with zero are present just above


- The S_m values in the (6–14) keV energy interval have random fluctuations around zero with χ^2 equal to 19.0 for 16 degrees of freedom (upper tail probability 27%).
- In (6–20) keV χ²/dof = 42.6/28 (upper tail probability 4%). The obtained χ² value is rather large due mainly to two data points, whose centroids are at 16.75 and 18.25 keV, far away from the (1–6) keV energy interval. The P-values obtained by excluding only the first and either the points are 11% and 25%.

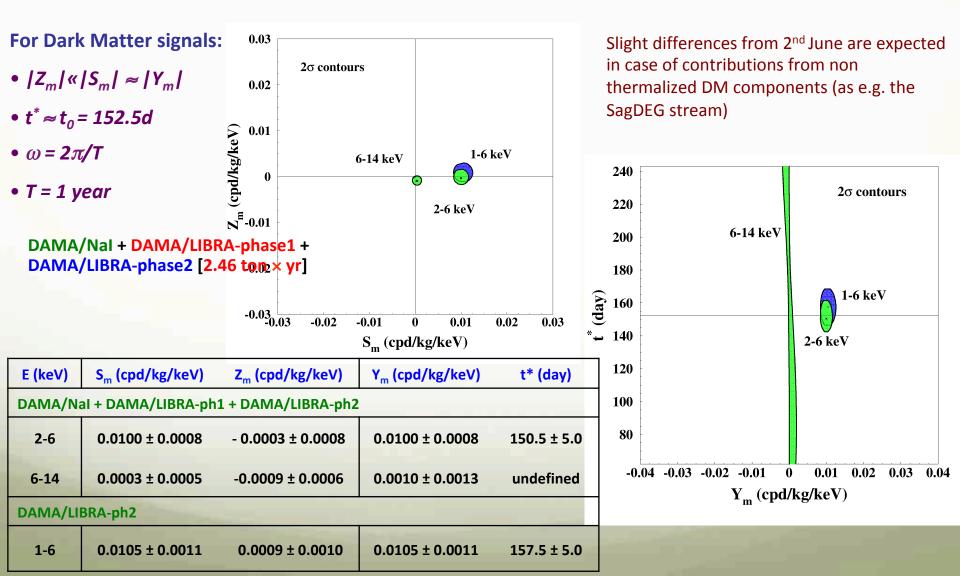
S_m for each annual cycle

The signal is well distributed over all the annual cycles in each energy bin

\boldsymbol{S}_m for each detector

DAMA/LIBRA-phase1 + DAMA/LIBRA-phase2 total exposure: 2.17 ton×yr

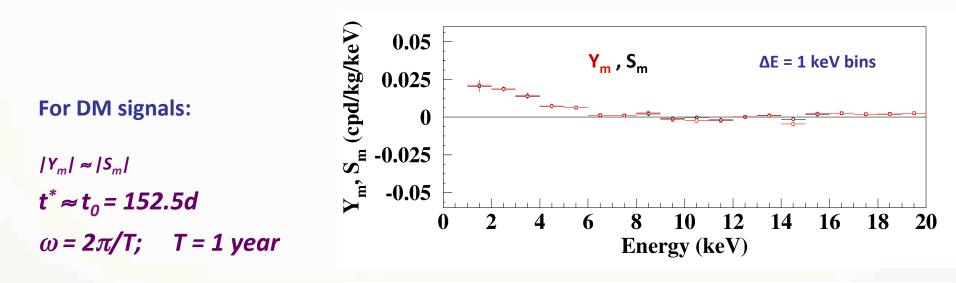
 S_m integrated in the range (2 - 6) keV for each of the 25 detectors (1 σ error)

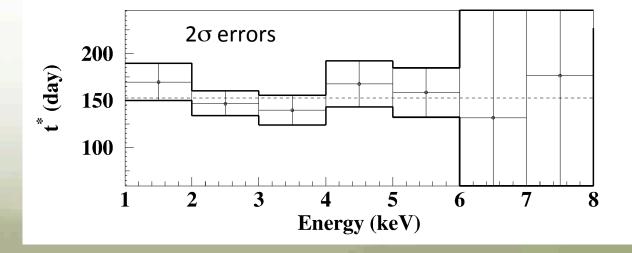

Shaded band = weighted averaged $S_m \pm 1\sigma$

 χ^2 /dof = 23.9/24 d.o.f.

The signal is well distributed over all the 25 detectors.

Is there a sinusoidal contribution in the signal? Phase \neq 152.5 day?


$$R(t) = S_0 + S_m \cos[\omega(t - t_0)] + Z_m \sin[\omega(t - t_0)] = S_0 + Y_m \cos[\omega(t - t^*)]$$


Phase vs energy

$$R(t) = S_0 + Y_m \cos\left[\omega\left(t - t^*\right)\right]$$

DAMA/Nal + DAMA/LIBRA-phase1 + DAMA/LIBRA-phase2 (2.46 ton × yr)

Slight differences from 2nd June are expected in case of contributions from non thermalized DM components (as the SagDEG stream)

Stability parameters of DAMA/LIBRA-phase2

Modulation amplitudes obtained by fitting the time behaviours of main running parameters, acquired with the production data, when including a DM-like modulation

Running conditions stable at a level better than 1% also in the new running periods

	DAMA/LIBRA- phase2_2	DAMA/LIBRA- phase2_3	DAMA/LIBRA- phase2_4	DAMA/LIBRA- phase2_5	DAMA/LIBRA- phase2_6	DAMA/LIBRA- phase2_7
Temperature (°C)	(0.0012 ± 0.0051)	$-(0.0002 \pm 0.0049)$	$-(0.0003 \pm 0.0031)$	(0.0009 ± 0.0050)	(0.0018 ± 0.0036)	$-(0.0006 \pm 0.0035)$
Flux N ₂ (l/h)	$-(0.15 \pm 0.18)$	$-(0.02 \pm 0.22)$	$-(0.02 \pm 0.12)$	$-(0.02 \pm 0.14)$	$-(0.01 \pm 0.10)$	$-(0.01 \pm 0.16)$
Pressure (mbar)	$(1.1 \pm 0.9) \times 10^{-3}$	(0.2 ± 1.1))×10 ⁻³	$(2.4 \pm 5.4) \times 10^{-3}$	$(0.6 \pm 6.2) \times 10^{-3}$	$(1.5 \pm 6.3) \times 10^{-3}$	$(7.2 \pm 8.6) \times 10^{-3}$
Radon (Bq/m ³)	(0.015 ± 0.034)	$-(0.002 \pm 0.050)$	$-(0.009 \pm 0.028)$	$-(0.044 \pm 0.050)$	(0.082 ± 0.086)	(0.06 ± 0.11)
Hardware rate above single ph.e. (Hz)	$-(0.12 \pm 0.16) \times 10^{-2}$	$(0.00 \pm 0.12) \times 10^{-2}$	$-(0.14 \pm 0.22) \times 10^{-2}$	$-(0.05 \pm 0.22) \times 10^{-2}$	$-(0.06 \pm 0.16) \times 10^{-2}$	$-(0.08 \pm 0.17) \times 10^{-2}$

All the measured amplitudes well compatible with zero + none can account for the observed effect (to mimic such signature, spurious effects and side reactions must not only be able to account for the whole observed modulation amplitude, but also simultaneously satisfy all the 6 requirements) Contributions to the total neutron flux at LNGS;
 Counting rate in DAMA/LIBRA for single-hit events, in the (2 - 6) keV energy region induced by:

$$\Rightarrow \begin{array}{l} \Phi_k = \Phi_{0,k} \left(1 + \eta_k \cos\omega \left(t - t_k \right) \right) \\ P_k = R_{0,k} \left(1 + \eta_k \cos\omega \left(t - t_k \right) \right) \end{array}$$

Modulation amplitudes

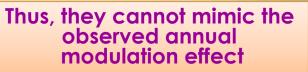
- \succ neutrons,
- \succ muons,
- solar neutrinos.

EPJC 74 (2014) 3196 (also EPJC 56 (2008) 333, EPJC 72 (2012) 2064,IJMPA 28 (2013) 1330022)

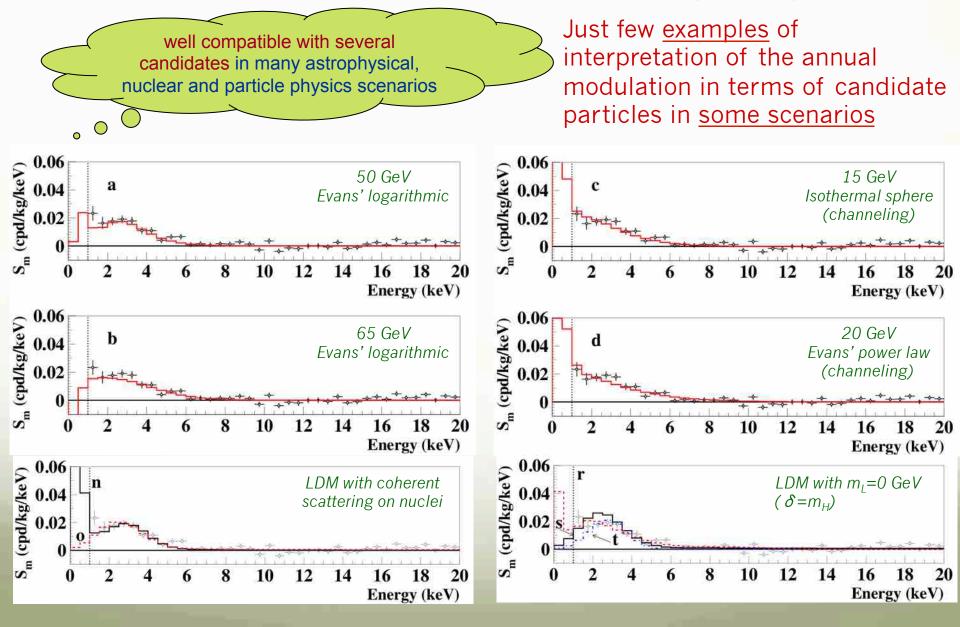
		0.2						
	Source	$\Phi^{(n)}_{0,k}$ (neutrons cm ⁻² s ⁻¹)	η_k	t_k	$ \frac{R_{0,k}}{(cpd/kg/keV)} $		$A_k = R_{0,k} \eta_k \ (ext{cpd/kg/keV})$	A_k/S_m^{exp}
	thermal n $(10^{-2} - 10^{-1} \text{ eV})$	1.08×10^{-6} [15]	$ \begin{array}{c} \simeq 0 \\ \mathrm{however} \ll 0.1 \ [2, \ 7, \ 8] \end{array} $	7	$< 8 \times 10^{-6}$	[2, 7, 8]	$\ll 8 \times 10^{-7}$	$\ll 7 \times 10^{-5}$
SLOW								
neutrons	epithermal n	2×10^{-6} [15]	$\simeq 0$		$< 3 \times 10^{-3}$	[2, 7, 8]	$\ll 3 \times 10^{-4}$	≪ 0.03
CARD AND TRACTOR	(eV-keV)		however $\ll 0.1 [2, 7, 8]$					
	fission, $(\alpha, n) \rightarrow n$ (1-10 MeV)	$\simeq 0.9 \times 10^{-7}$ [17]	$\simeq 0$ however $\ll 0.1$ [2, 7, 8]	 .	$< 6 \times 10^{-4}$	[2, 7, 8]	$\ll 6 \times 10^{-5}$	$\ll 5 \times 10^{-3}$
FAST neutrons	$\mu \rightarrow n \text{ from rock}$ (> 10 MeV)	$\simeq 3 \times 10^{-9}$ (see text and ref. [12])	0.0129 [23]	end of June [23, 7, 8]	$\ll 7 \times 10^{-4}$	(see text and $[2, 7, 8]$)	$\ll 9 \times 10^{-6}$	$\ll 8 \times 10^{-4}$
	$\mu \rightarrow n$ from Pb shield (> 10 MeV)	$\simeq 6 \times 10^{-9}$ (see footnote 3)	0.0129 [23]	end of June [23, 7, 8]	$\ll 1.4 \times 10^{-3}$	(see text and footnote 3)	$\ll 2 \times 10^{-5}$	$\ll 1.6\times 10^{-3}$
	u ightarrow n (few MeV)	$\simeq 3 \times 10^{-10}$ (see text)	0.03342 *	Jan. 4th *	$\ll 7 \times 10^{-5}$	(see text)	$\ll 2 \times 10^{-6}$	$\ll 2 \times 10^{-4}$
	direct μ	$\Phi_0^{(\mu)} \simeq 20 \ \mu \ { m m}^{-2} { m d}^{-1} \ [20]$	0.0129 [23]	end of June [23, 7, 8]	$\simeq 10^{-7}$	[2, 7, 8]	$\simeq 10^{-9}$	$\simeq 10^{-7}$
	direct ν	$\Phi_0^{(\nu)} \simeq 6 \times 10^{10} \ \nu \ {\rm cm}^{-2} {\rm s}^{-1} \ [26]$	0.03342 *	Jan. 4th *	$\simeq 10^{-5}$	[31]	$3 imes 10^{-7}$	3×10^{-5}

* The annual modulation of solar neutrino is due to the different Sun-Earth distance along the year; so the relative modulation amplitude is twice the eccentricity of the Earth orbit and the phase is given by the perihelion.

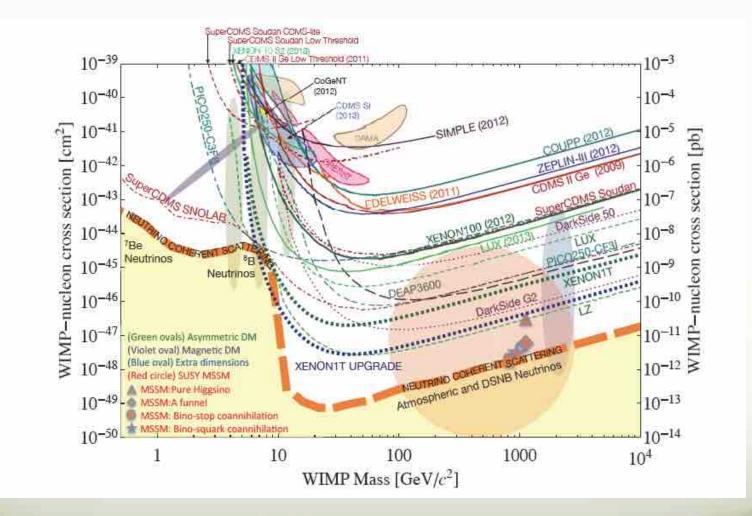
All are negligible w.r.t. the annual modulation amplitude observed by DAMA/LIBRA K and they cannot contribute to the observed modulation amplitude.

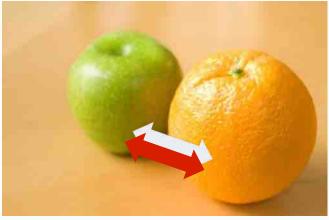

+ In no case neutrons (of whatever origin) can mimic the DM annual modulation signature since some of the **peculiar requirements of the signature** would fail, such as the neutrons would induce e.g. variations in all the energy spectrum, variation in the multiple hit events,... which were not observed.

Summary of the results obtained in the additional investigations of possible systematics or side reactions – DAMA/LIBRA


NIMA592(2008)297, EPJC56(2008)333, J. Phys. Conf. ser. 203(2010)012040, arXiv:0912.0660, S.I.F.Atti Conf.103(211), Can. J. Phys. 89 (2011) 11, Phys.Proc.37(2012)1095, EPJC72(2012)2064, arxiv:1210.6199 & 1211.6346, IJMPA28(2013)1330022, EPJC74(2014)3196, IJMPA31(2017)issue31

Cautious upper limit (90%C.L.)
e, <2.5×10 ⁻⁶ cpd/kg/keV
ct <10 ⁻⁴ cpd/kg/keV
<10 ⁻⁴ cpd/kg/keV
<1-2 ×10 ⁻⁴ cpd/kg/keV
ations <10 ⁻⁴ cpd/kg/keV
<10 ⁻⁴ cpd/kg/keV
<3×10 ⁻⁵ cpd/kg/keV


+ they cannot satisfy all the requirements of annual modulation signature


Model-independent evidence by DAMA/Nal and DAMA/LIBRA-ph1, -ph2

Is it an "universal" and "correct" way to approach the problem of DM and comparisons?

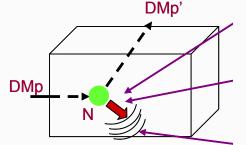
No, it isn't. This is just a largely arbitrary/partial/incorrect exercise

...models...

- Which particle?
- Which interaction coupling?
- Which Form Factors for each target-material?
- Which Spin Factor?
- Which nuclear model framework?
- Which scaling law?
- Which halo model, profile and related parameters?
- Streams?
- ...

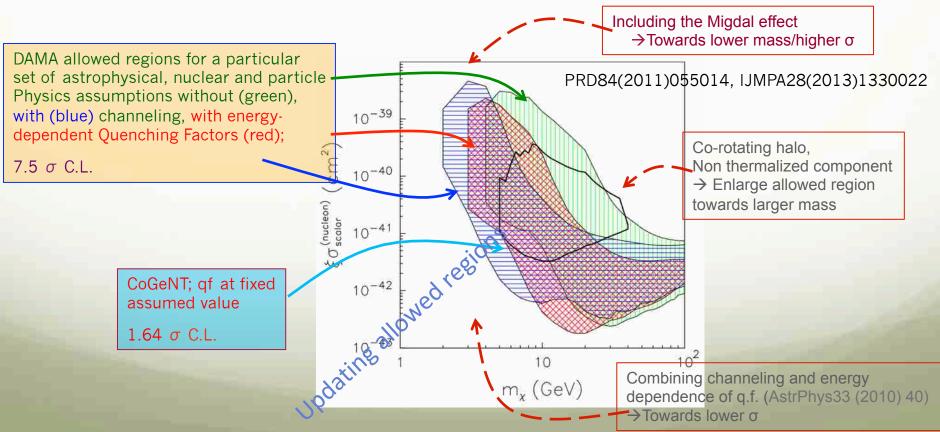
About interpretations and comparisons

See e.g.: Riv.N.Cim.26 n.1(2003)1, IJMPD13(2004)2127, EPJC47(2006)263, IJMPA21(2006)1445, EPJC56(2008)333, PRD84(2011)055014, IJMPA28(2013)1330022


- ...and experimental aspects...
- Exposures
- Energy threshold
- Detector response (phe/keV)
- Energy scale and energy resolution
- Calibrations
- Stability of all the operating conditions.
- Selections of detectors and of data.
- Subtraction/rejection procedures and stability in time of all the selected windows and related quantities
- Efficiencies
- Definition of fiducial volume and nonuniformity
- Quenching factors, channeling, ...

Uncertainty in experimental parameters, as well as necessary assumptions on various related astrophysical, nuclear and particle-physics aspects, affect all the results at various extent, both in terms of exclusion plots and in terms of allowed regions/volumes. Thus comparisons with a fixed set of assumptions and parameters' values are intrinsically strongly uncertain.

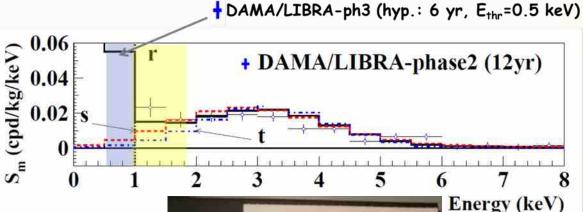
No experiment can be directly compared in model independent way with DAMA


example...

case of DM particles inducing elastic scatterings on target-nuclei, SI case

Regions in the nucleon cross section vs DM particle mass plane

- Some velocity distributions and uncertainties considered.
- The DAMA regions represent the domain where the likelihood-function values differ more than 7.5 σ from the null hypothesis (absence of modulation).
- For CoGeNT a fixed value for the Ge quenching factor and a Helm form factor with fixed parameters are assumed.
- The CoGeNT region includes configurations whose likelihood-function values differ more than 1.64σ from the null hypothesis (absence of modulation). This corresponds roughly to 90% C.L. far from zero signal.


Running phase2 and towards future DAMA/LIBRA-phase3 with software energy threshold below 1 keV

Enhancing sensitivities for DM corollary aspects, other DM features, second order effects and other rare processes:

- The light collection of the detectors can further be improved
- Light yields and the energy thresholds will improve accordingly
- The electronics can be improved too
- R&D towards possible DAMA/LIBRA-phase3 continuing:
 - 1 new development of high Q.E. PMTs with increased radio-purity to directly couple them to the crystals.
 - 2 new protocols for possible modifications of the detectors;
 - ③ alternative strategies under investigation.
 - Other possible option: new ULB crystal scintillators (e.g. ZnWO₄) placed in between the DAMA/LIBRA detectors to add also a high sensitivity directionality measurement.

The presently-reached metallic PMTs features:

- Q.E. around 35-40% @ 420 nm (NaI(TI) light)
- Radio-purity at level of 5 mBq/PMT (⁴⁰K), 3-4 mBq/PMT (²³²Th), 3-4 mBq/PMT (²³⁸U), 1 mBq/PMT (²²⁶Ra), 2 mBq/PMT (⁶⁰Co).

4 prototypes from a dedicated R&D with HAMAMATSU at hand

Conclusions

- Model-independent positive evidence for the presence of DM particles in the galactic halo at 12.9σ C.L. (20 independent annual cycles with 3 different set-ups: 2.46 ton × yr)
- Modulation parameters determined with increasing precision
- New investigations on different peculiarities of the DM signal exploited in progress
- Full sensitivity to many kinds of DM candidates and interactions types (both inducing recoils and/or e.m. radiation), full sensitivity to low and high mass candidates

- DAMA/LIBRA-phase2 continuing data taking
- DAMA/LIBRA—phase3 R&D in progress
- R&D for a possible DAMA/1ton full sensitive mass set-up, proposed to INFN by DAMA since 1996, continuing at some extent as well as some other R&Ds
- New corollary analyses in progress
- Continuing investigations of rare processes other than DM